Synthesis of large amounts of volatile element bearing silicate glasses using a two-stage melting process

5	Paul Pangritz ^a , Christian Renggli ^a , Jasper Berndt ^a , Arno Rohrbach ^a , Stephan Klemme ^a
6	^a Institut für Mineralogie, Corrensstrasse 24, Universität Münster, 48149 Münster, Germany
7	
8	Paul Pangritz: Email: paul.pangritz@uni-muenster.de, ORCID: 0000-0002-5631-6982
9	Christian Renggli: Email: renggli@uni-muenster.de, ORCID: 0000-0001-8913-4176
10	Jasper Berndt: Email: jberndt@uni-muenster.de
11	Arno Rohrbach: Email: arno.rohrbach@uni-muenster.de
12	Stephan Klemme: Email: stephan.klemme@uni-muenster.de ORCID: 0000-0001-7859-9779
13	
14	Keywords: silicate melts, glass synthesis, volatiles, volatile bearing glass, evaporation
15	

Abstract:

17	The evaporation of volatile and moderately volatile elements from silicate glasses is an
18	important topic in geosciences, environmental, and materials science. Glasses that contain
19	volatile elements are used in a wide range of experimental studies, but the synthesis of volatile
20	bearing glasses at high temperatures as well as the choice of starting materials is challenging.
21	Here we present a new method for the synthesis of 15-20g moderately volatile and volatile
22	element bearing boron-aluminosilicate glasses using a two-stage melting process. Results show
23	that the glasses contain between 7000 and 10000 μ g/g Zn, Cu, or Te and ~3000 μ g/g S. In-situ
24	analyses with scanning electron microscope (SEM) and electron microprobe analysis (EPMA)
25	confirm that all glasses are homogenous for major and trace elements within the analytical
26	uncertainties.
27	Introduction:
28	Silicate glasses and melts are ubiquitous phases, both in geological systems on Earth and other
29	planetary bodies ¹ . Natural silicate glasses contain volatile elements (e.g., S, Cl, H) which play
30	a key role in several geological processes such as element transfer in subduction zones, volcanic
31	degassing, contamination of atmospheres, or ore-forming processes ² . The behavior of volatile
32	and moderately volatile elements, such as Cu, and Zn during evaporation from silicate melts is
33	an active field of research ^{3–9} but neither the geochemical character (i.e., siderophile, lithophile,

chalcophile, or atmophile) of these elements nor the behavior of these elements during evaporation as a function of temperature and oxygen fugacity is well understood. Additionally, complexing elements such as S or Cl may affect the volatility of these metals ¹⁰. Furthermore, silicate glasses are commonly used as starting materials in experimental geosciences or reference materials for microanalytical methods ¹¹⁻¹³. However, as silicate glasses are usually prepared at high temperatures, most glasses were prepared in simplified chemical compositions and hence did not contain volatile elements. However, as natural silicate melts and glasses can contain several weight percent of volatile and moderately volatile elements, a novel method for the synthesis of large amounts of volatile element bearing boron-aluminosilicate glasses is clearly needed. Furthermore, most reference materials that are employed for microanalytical studies in the geosciences, environmental, and materials sciences are glasses that are either free of volatile elements or seriously zoned in volatile elements^{14,15}. New homogeneous glasses with known volatile element concentrations would be beneficial to a large community of scientists that are concerned with microanalysis of geological materials. The aim of this study is to identify a method with which large amounts (~15-20g) of homogenous and undegassed volatile-bearing glasses can be prepared. The glasses may serve as reference materials for microanalysis, and as starting materials for evaporation- and degassing experiments. Hence we set out to prepare large amounts of volatile-rich silicate

52 glasses using several starting material compositions with varying experimental strategies. The 53 synthesized glasses contain Cu, Zn, Te, and S, and were characterized for homogeneity and 54 composition using different analytical techniques.

55 Experimental Strategy

Volatile-rich starting material glasses can be synthesized at high pressures, e.g., using internally heated pressure vessels ¹⁶, or the piston-cylinder apparatus ^{9,17}. However, high-pressure synthesis of glasses yields only small amounts (at best in the order of a few 100 mg) of undegassed and homogenous glass, which is probably not enough material for a systematic series of evaporation experiments or as reference material for microanalysis.

Hence we decided to explore the possibility to prepare volatile-element bearing glasses at atmospheric pressures in conventional noble metal crucibles. However, initial tests in haplobasaltic melt compositions yielded glasses that were heavily zoned in the volatile elements, with almost complete degassed glass zones at the top of the crucible and less degassed glasses towards the bottom of the crucible (Figure. 1a below). This observed zonation of the glass in the crucible increases with run duration, temperature, and decreasing viscosity of the melt. Hence we set out to identify suitable melt compositions, run durations, and temperatures to prevent evaporative loss of volatile elements from the glass. Our ultimate goal was to prepare

70 a large reservoir of undegassed glass below (Figure 1b).

Figure 1. (a) Initial experiments in haplobasaltic compositions resulted in a strongly zoned glass, with low concentrations of the volatile elements at the top of the crucible (yellow area) and higher concentrations of volatile elements towards the bottom of the crucible. (b) An ideal experiment: the glass contains high concentrations of volatile elements, only a thin layer of glass at the very top of the crucible has lost elements due to evaporation but most of the glass is undegassed and homogeneous.

78	Experimental and Analytical Methods:
79	Starting materials
80	Initially, we prepared glasses in a haplobasaltic composition at the anorthite $(\mbox{CaAl}_2\mbox{Si}_2\mbox{O}_8)$ –
81	diopside (CaMg ₂ Si ₂ O ₆) eutectic at An ₃₆ Di ₆₄ ¹⁸ . Starting material mixtures were prepared using
82	reagent-grade MgO, Al ₂ O ₃ , and SiO ₂ (Sigma Aldrich, GmbH, Germany), and CaCO ₃ (Alfa
83	Aesar GmbH, Germany). To release any adsorbed water or hydroxides, MgO was previously
84	fired at 1000°C for more than 12 hours and subsequently stored at 110°C in a drying cabinet.
85	As initial tests showed that the liquidus temperature of 1275°C of this composition in the system
86	CaO-MgO-Al ₂ O ₃ -SiO ₂ was too high to prevent evaporative loss of volatile elements, we added
87	B (using boric acid (H ₃ BO ₃) (ABCR-GmbH, Germany) to further decrease the liquidus of the
88	system.
89	
90	Glass synthesis
91	We used a Linn HighTherm VMK1800 (Linn GmbH, Germany) box furnace to prepare our
92	glasses. Temperatures within the furnace are monitored and controlled by a $Pt_{70}Rh_{30} - Pt_{94}Rh_6$
93	(type B) thermocouple connected to a Eurotherm 2416 (Schneider Electric Systems, Germany)
94	controller. The furnace is pre-heated to the given temperature at least 30 minutes before the

experiments to ensure it is thermally equilibrated and that temperature variations within the

96	furnace are negligible.
97	Starting material compositions (Table 1) were homogenized using an agate mortar with ethanol
98	for one hour and stored in a drying cabinet (50°C) to evaporate any residual ethanol. Because
99	Ca was added to the mix as $CaCO_3$ and B_2O_3 as H_3BO_3 , the starting material mixture was fired
100	at 1000°C for 3 hours to decarbonate the CaCO ₃ and to convert the H_3BO_3 to B_2O_3 ¹⁹ . The
101	resulting mixture was reground under ethanol to a fine powder, and the resulting mixture was
102	vitrified in a Pt crucible (this is the "stage 1" of our glass preparation procedure, see flowchart
103	(Figure 2) below) at 1200°C for 30 minutes, and subsequently quenched by tipping the bottom
104	of the crucible into the water bath and fully dropping it in after a few seconds.

	S	ulfur-containir	ng	Sulfu	ır-free
Starting material	PPG07	PPG09	PPG11.2	CRG01	PPG11
CaCO ₃	5.5380	5.5380	5.7409	5.9264	5.9318
MgO	1.4936	1.4934	1.5481	1.5286	1.5279
Al ₂ O ₃	2.1253	2.1254	2.2019	2.1734	2.1745
SiO ₂	6.9591	6.9590	7.2113	7.1177	7.1170
H ₃ BO ₃	3.1826	3.1826	3.2991	3.2551	3.2552
CaSO₄	0.3152	0.7008	0.3381	-	-
TeO ₂	-	-	-	0.1538	-
CuO	-	0.3152	-	-	-
Cu ₂ O	-	-	-	-	-
ZnO	-	-	0.2023	-	0.272

Table 1. starting material compositions (in g)

	107	The colorless "stage 1" glass then was crushed and ground to a fine powder using the agate
	108	mortar and ethanol again for one hour. The glass powder was doped with the respective element
)	109	(as oxides for Cu, Te, and Zn and $CaSO_4$ for S). Note that the choice of the phase as which the
- - - -	110	volatile element is added to the starting material, is enormously important for the glass
5 7 8	111	synthesis: Initial experiments showed that the glasses that were prepared with compounds such
))	112	as elemental S, lost all S during the glass-making procedure and we speculate that the
- - -	113	evaporative loss of S probably happened before the actual glass had formed. A much better
; ; ;	114	choice is sulfate as the S-source in the starting material, and our results show that the glasses
,) !	115	are not degassed in S. Similarly, the use of metal oxides (e.g. ZnO) is better than Zn from
; ;	116	standard solutions or metallic Zn. Trace elements and "stage 1" glass were then homogenized
5 7 8	117	for at least one hour in the agate mortar with ethanol and dried under red light.
,) !		
; - ;		
) 7 }		

Figure 2. Flowchart showing different steps for glass synthesis with runtimes, temperatures (left), and corresponding photos of the synthesis (right). To ensure a homogenous starting material, pulverization of the decarbonated and partly sintered mixture (c), as well as the homogenization of volatile compounds with the first stage glass (e-g) is extremely important for a successful synthesis.
Starting compositions were placed into a Pt crucible under slight compression with a pestle to

125 minimize pore space in the starting material and consequently gas bubble formation during

126 vitrification. The mixture is subsequently vitrified at 1200°C for 7 minutes and quenched in

1		
2 3 4 5	127	cold water again. We found that 7 minutes runtime proved to be the best compromise to allow
6 7 8	128	for homogenization of the melt and to prevent volatile element loss due to evaporation.
9 10 11 12	129	The stage 2 glass, in contrast to the stage 1 glass, appears opaque and white-colored by the fact
12 13 14 15	130	that the low melting duration of the final vitrification is too short to let all leftover air escape
16 17 18	131	through the melt.
19 20		
21 22		
23 24		
25		
26 27		
28 29		
30		
31 32		
33 34		
35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

132 Analytical methods:

133	The glasses were mounted in epoxy resin, polished, carbon-coated, and first examined using a
134	JEOL 6510 LA scanning electron microscope (SEM). Major element concentrations of all
135	phases were determined with a 5-spectrometer JEOL JXA 8530F electron microprobe analyzer
136	(EMPA) at the Institute für Mineralogie at the Westfälische Wilhelms-Universität Münster
137	(WWU). All glasses were measured with 15kV acceleration voltage, a beam current of 60 nA,
138	and beamsize of 10 μ m. Counting times were 120 s on peak and 60 s on the background for B,
139	S, Cu, Zn, and Te. All other elements were measured with 20 s on the peak and 10 s on the
140	background. A set of well-characterized synthetic and natural reference materials were used for
141	standardization. Precision and accuracy were monitored by measuring secondary standards that
142	were not used for calibration.

143 Table 2. EMPA measurement of	conditions and	reference materials
---	----------------	---------------------

Element	Diff. Crystal	Peak Pos.	Bkg. Position. L	Bkg. Position. U	Ref. material
		nm	mm	mm	
В	LDE2	195.807	25	25	Ast_BN
AI	TAP	90.868	5	5	H_DistheneR8
Mg	TAP	107.731	2.8	4	U_OlivineSanCarlos
Si	PETJ	228.169	3	2	U_Hypersthene
Ca	PETJ	107.379	5.5	4.5	H_DiopsideST48
Cu	LIFH	107.013	1.5	2	H_Kupferkies
Zn	LIFH	99.685	3	3	Ast_Willemite
Те	LIFH	105.04	3.5	7.5	Ast_Te
Те	PETL	105.548	3.5	7.5	Ast_Te
S	PETL	172.073	3.5	3	Ast_Pyrite

1		
2		
4	145	Tellurium measurements were performed on two spectrometer crystals to increase counts per
5		
6		
7	146	second.
8		
9		
10		
11		
13		
14		
15		
16		
17		
18		
19 20		
20		
22		
23		
24		
25		
20 27		
28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46 47		
47		
49		
50		
51		
52		
53 51		
55		
56		
57		
58		
59 60		
00		

Results:

148	Textural observations
149	The S-, Zn-, and Te-bearing glasses were white or slightly cloudy, whereas the Cu-bearing glass
150	had deep blue color, probably caused by Cu ²⁺ . Initial characterization of the glasses with SEM
151	shows that the cloudy nature of some glasses is due to small gas bubbles, which were
152	homogeneously distributed within the glass (Figure 3). However, we find that the bubbles are
153	formed from air within the starting material powder due to incomplete sintering, and not from
154	evaporating volatile compounds during the melting process. This interpretation is supported by
155	the fact, that the glass composition does not change in the vicinity of the bubbles for any
156	element. We observed no leftover oxide grains or other impurities within the bubbles or the
157	glass. The Te-bearing glass (CRG01) is less cloudy due to fewer gas bubbles. The bubble
158	formation was minimized by compression of the powder in the crucible before melting. The
159	CuS glass (PPG09) was frothy but homogenous because of the decomposition of 2CuO into
160	Cu_2O and $\frac{1}{2}O_2$

ACS Paragon Plus Environment

4 5	162	Figure 3. Backscattered electron images (BSE) of PPG09 (a), PPG07 (b), and CRG01 (c)
6 7 8 9	163	glasses. Observed bubbles are a relic of leftover air in the starting material. There is no change
10 11 12	164	in composition closer to bubbles. The difference in shape and size is explained by different
13 14 15 16	165	depths of the bubbles relative to the polishing surface. Smaller particles inside the bubbles are
17 18 19	166	not condensed volatile element grains, but particles of the polishing pastes that were used during
20 21 22	167	sample preparation. Small white circles in the CRG01 glass (c) show ablation craters from
24 25 26 27 28 29 30 31 32 33 45 36 37 38 90 41 42 43 44 45 467 48 951 52 34 55 57 58 59	168	Laser-abilation ICP-MS measurements.
00		

Figure. 4 shows element abundances in the glasses. Major and minor elements are homogeneously distributed within the glass. The top and bottom parts of the glasses in the crucibles were analyzed separately (see Figure 5) to assure that no evaporation occurred during the melting process. Both, upper and lower crucible parts show the same elemental abundances within the analytical error for all elements measured. Slightly varying concentrations, (e.g. S concentrations in the bottom right diagram) are probably caused by not fully homogenized starting mixtures.

Table 3. EPMA measurements

	CRG01		PPC	G07	PPG09		PPG11.2	
	av.	σ	av.	σ	av.	σ	av.	σ
SiO ₂	41.78	0.38	44.97	0.263	45.28	0.24	43.89	0.167
Al ₂ O ₃	13.34	0.069	14.10	0.077	14.06	0.070	13.58	0.048
MgO	7.51	0.048	7.44	0.052	7.40	0.025	9.61	0.030
CaO	19.89	0.084	20.71	0.123	20.76	0.080	20.38	0.088
B ₂ O ₃	15.38	0.28	10.45	0.28	10.48	0.36	9.36	0.31
TeO ₂	0.95	0.04	-	-	-	-	-	-
SO₃	-	-	0.86	0.098	0.77	0.062	1.22	0.08
ZnO	-	-	-	-	-	-	1.30	0.028
CuO	-	-	-	-	0.92	0.029	-	-
Sum	98.85		98.53		99.66		99.33	

Chemical analyses of the glasses were performed using EPMA, and average values (av) are given together with analytical uncertainties (σ) as the standard deviation of all measurements.

Discussion

195	We find that the successful synthesis of large amounts (i.e. several grams) of volatile-bearing
196	silicate glasses critically depends on the choice of volatile element compound in the starting
197	material. The volatile-element compound needs to be stable at high temperatures (have a high
198	melting point and high solubility in silicate melts) but it must also dissolve rapidly in the silicate
199	melt and diffuse quickly within the melt, as our results show that short (7min) melting duration
200	for the final glass is optimal. Our results show that the starting material compounds TeO_2 ,
201	CuO/Cu ₂ O, CaSO ₄ , and ZnO give the best results. Previous runs where elemental Sulfur, SeO ₂ ,
202	and Se standard solution (such as those used in ICP-MS analyses) were used in the starting
203	material led to complete degassing of these elements in the glass. Note that the major element
204	composition, melt viscosity and run temperatures were kept constant in all these runs so that
205	the degassing of these starting materials is only ascribed to low decomposition temperatures
206	and/or instability of the starting material compounds at high temperatures. Alternatively to the
207	use of sulfate, our results show that S may be added as a sulfide, but this requires glass synthesis
208	under highly reducing conditions below the iron-wustite buffer (IW), where S has a high
209	solubility in silicate melts ²⁰ . Similarly, Se and Te-bearing glasses may be prepared at reducing
210	conditions <iw, and="" compounds.<="" selenide="" td="" telluride="" using=""></iw,>

2	
3 ⊿	
4 5	
6	
7	
8 9	
10	
11	
12	
14	
15	
16	
1/	
19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38	
40	
41	
42 43	
43 44	
45	
46 47	
47 48	
49	
50	
51 52	
53	
54	
55 56	

212	Conclusions
-----	-------------

6 7 8	213	We present a new two-stage method for the synthesis of large amounts of homogenous, unzoned
9 10 11 12	214	glasses with high amounts of volatile elements such as S, Cu, Te, and Zn. These glasses may
13 14 15	215	be used as starting materials for evaporation experiments, or reference materials for
16 17 18	216	microanalyses with EMPA or LA-ICP-MS.
19 20 21 22	217	
23 24 25	218	
26 27 28	219	
29 30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

2 3 4 5	220	AUTHOR INFORMATION											
6 7 8 9	221	Corresponding Author											
10 11 12	222	Paul Pangritz – Institut für Mineralogie, Westfälische Wilhelms-Universität Münster,											
12 13 14	223	Germany. Email: paul.pangritz@uni-muenster.de											
15 16 17	224	Paul Pangritz – Institut für Mineralogie, Westfälische Wilhelms-Universität Münster,											
18 19	225	Germany. Email: paul.pangritz@uni-muenster.de											
20 21 22 23	226	Christian Renggli - Institut für Mineralogie, Westfälische Wilhelms-Universität Münster,											
24 25 26	227	Germany. Email: renggli@uni-muenster.de, Phone: +49 251 83-33452											
20 27 28 29 30 31 32 33 34 35 36	228	Jasper Berndt - Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Germany.											
	229	Email: jberndt@uni-muenster.de, Phone: +49 251 83-33049											
	230	Arno Rohrbach - Institut für Mineralogie, Westfälische Wilhelms-Universität Münster,											
37 38 39	231	Germany. Email: arno.rohrbach@uni-muenster.de, Phone: +49 251 83-36138											
40 41 42	232	Stephan Klemme - Institut für Mineralogie, Westfälische Wilhelms-Universität Münster,											
43 44 45	233	Germany. Email: stephan.klemme@uni-muenster.de, Phone: +49 251 83 33047											
46 47 48	234	Author Contributions											
49 50 51 52	235	All authors have given approval to the final version of the manuscript.											
53 54 55 56 57 58 59 60	236	Funding Sources											

2 3 4 5	237	We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG)-Project-D
6 7 8	238	263649064—SFB TRR-170. This is SFB TRR 170 publication no. Xxx. CR is funded by the
9 10 11 12	239	Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project 442083018.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	240	
 39 40 41 42 43 44 45 		
 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 		

2 3 4	2
5 6 7 8	2
9 10 11 12	2
13 14 15	2
16 17 18 19 20 21 22 32 4 25 26 27 28 20 31 32 33 45 36 37 8 9 40 41 42 34 45 46 47 48 49	2
49 50 51 52	
53 54 55 56	
5/	

58 59 60

ACKNOWLEDGMENT

Our thanks go to Beate Schmitte for her superb support during EPMA, Maik Trogisch for his
excellent sample preparation, Peter Weitkamp, Christopher Fritzsche in the precision
engineering workshops, and Ludger Buxtrup, Samuel Flunkert, and Andrew Hardes for support
in all things electronics.

No.	B ₂ O ₃	Al ₂ O ₃	MgO	SiO ₂	CaO	SO₃	ZnO	CuO	TeO ₂	Tota
1	10.86	14.16	7.51	45.12	20.53	0.65	-	-	-	99.24
2	10.34	14.19	7.50	45.22	20.55	0.72	-	-	-	98.57
3	10.57	14.12	7.39	45.18	20.62	0.77	-	-	-	98.92
4	10.28	14.05	7.47	45.00	20.66	0.78	-	-	-	98.44
5	10.21	14.12	7.34	45.45	20.65	0.80	-	-	-	98.52
6	10.04	14.01	7.45	45.17	20.61	0.81	-	-	-	98.65
7	10.34	14.15	7.40	45.13	20.56	0.81	-	-	-	98.0
8	10.97	14.16	7.43	44.77	20.58	0.82	-	-	-	98.7
9	10.55	14.19	7.48	45.26	20.91	0.84	-	-	-	98.83
10	10.62	14.08	7.48	44.79	20.71	0.85	-	-	-	98.5
11	10.43	14.21	7.50	44.98	20.63	0.87	-	-	-	98.24
12	10.47	14.10	7.46	44.86	20.67	0.88	-	-	-	99.23
13	10.12	14.14	7.49	44.84	20.73	0.88	-	-	-	98.43
14	10.97	14.06	7.36	45.22	20.75	0.88	-	-	-	98.3
15	9.93	14.10	7.51	44.49	20.94	0.91	-	-	-	98.5
16	10.32	14.21	7.41	44.89	20.66	0.94	-	-	-	97.8
17	10.71	13.96	7.39	45.05	20.84	0.97	-	-	-	98.73
18	10.26	14.05	7.42	44.35	20.75	0.98	-	-	-	98.20
19	10.58	14.01	7.43	44.68	20.88	0.99	-	-	-	97.88
20	10.44	13.95	7.36	45.00	20.88	1.08	-	-	-	98.6
Mean	10.45	14.10	7.44	44.97	20.71	0.86				98.53
Std.	0.28	0.08	0.05	0.26	0.12	0.10				0.37

ACS Paragon Plus Environment

³⁴ 247

1	
2	
3	0
4	24

Table.5: Electron microprobe analyses of sample PPG11.2

5	No.	B ₂ O ₃	Al ₂ O ₃	MgO	SiO ₂	CaO	SO ₃	ZnO	CuO	TeO ₂	Total
6 7	1	9.21	13.65	9.66	43.74	20.58	0.95	1.34	-	-	99.13
8	2	9.71	13.67	9.62	44.05	20.28	1.14	1.27	-	-	99.74
9	3	8.95	13.52	9.57	43.97	20.40	1.31	1.25	-	-	98.97
10	4	9.23	13.50	9.56	44.25	20.29	1.21	1.29	-	-	99.33
11	5	9.59	13.61	9.63	44.11	20.26	1.22	1.26	-	-	99.68
13	6	9.39	13.54	9.62	43.73	20.31	1.30	1.29	-	-	99.18
14	7	9.61	13.57	9.65	43.77	20.52	1.22	1.30	-	-	99.64
15 16	8	9.36	13.52	9.55	43.79	20.40	1.29	1.32	-	-	99.23
16 17	9	9.54	13.60	9.63	44.05	20.45	1.21	1.29	-	-	99.77
18	10	9.86	13.55	9.60	43.95	20.32	1.29	1.35	-	-	99.92
19	11	9.67	13.51	9.62	43.76	20.31	1.26	1.27	-	-	99.40
20	12	9.34	13.60	9.59	43.74	20.41	1.25	1.29	-	-	99.22
21	13	9.12	13.60	9.61	44.12	20.51	1.22	1.31	-	-	99.49
23	14	9.67	13.63	9.62	44.05	20.33	1.15	1.30	-	-	99.75
24	15	9.00	13.59	9.61	43.96	20.32	1.20	1.31	-	-	98.99
25 26	16	8.93	13.61	9.58	43.63	20.44	1.24	1.34	-	-	98.77
20 27	17	9.71	13.59	9.6	43.75	20.37	1.19	1.27	-	-	99.48
28	18	8.62	13.60	9.57	43.90	20.46	1.20	1.34	-	-	98.69
29	19	9.24	13.52	9.58	43.82	20.29	1.19	1.32	-	-	98.96
30 21	20	9.38	13.53	9.64	43.71	20.42	1.37	1.30	-	-	99.35
32	Mean	9.36	13.58	9.61	43.89	20.38	1.22	1.30	-	-	99.33
33	Std.	0.31	0.05	0.03	0.17	0.09	0.08	0.03	-	-	0.34

No.	B ₂ O ₃	Al ₂ O ₃	MgO	SiO ₂	CaO	SO₃	ZnO	CuO	TeO ₂	Total
1	9.63	14.00	7.4	45.24	20.71	0.74	-	0.88	-	98.60
2	10.62	13.99	7.39	45.12	20.62	0.71	-	0.89	-	99.33
3	10.4	13.99	7.4	45.23	20.86	0.85	-	0.96	-	99.69
4	10.52	14.08	7.40	45.39	20.79	0.81	-	0.88	-	99.87
5	10.24	14.14	7.42	45.63	20.9	0.69	-	0.89	-	99.91
6	10.3	14.05	7.36	45.78	20.88	0.73	-	0.89	-	99.99
7	10.9	13.99	7.41	45.21	20.75	0.83	-	0.93	-	100.0
8	10.79	14.08	7.36	45.06	20.67	0.80	-	0.93	-	99.69
9	10.47	14.01	7.39	44.89	20.72	0.72	-	0.97	-	99.17
10	10.88	14.00	7.44	44.89	20.79	0.83	-	0.93	-	99.76
11	10.5	14.04	7.36	45.14	20.7	0.79	-	0.94	-	99.47
12	11.13	14.02	7.38	45.11	20.78	0.79	-	0.91	-	100.1
13	10.16	14.05	7.38	45.21	20.76	0.80	-	0.89	-	99.25
14	10.38	14.01	7.38	45.42	20.74	0.87	-	0.94	-	99.75
15	10.32	14.06	7.41	45.13	20.62	0.81	-	0.92	-	99.26
16	10.06	14.12	7.41	45.21	20.67	0.68	-	0.91	-	99.06
17	11.06	14.16	7.42	45.71	20.81	0.69	-	0.92	-	100.7
18	10.07	14.28	7.42	45.59	20.88	0.64	-	0.88	-	99.76
19	10.49	14.06	7.38	45.44	20.75	0.81	-	0.96	-	99.88
20	10.75	14.06	7.45	45.16	20.81	0.751	-	0.95	-	99.93
Mean	10.48	14.06	7.40	45.28	20.76	0.77	-	0.92	-	99.66
Std.	0.36	0.07	0.02	0.24	0.08	0.06	-	0.03	-	0.46

ACS Paragon Plus Environment

 $\frac{34}{35}251$

1	
2	
3	050
4	232
5	252
6	255

Table.7: Electron microprobe analyses of sample CRG01

0	T										
7	No.	B ₂ O ₃	Al ₂ O ₃	MgO	SiO ₂	CaO	SO₃	ZnO	CuO	TeO ₂	Total
8	1	15.08	13.42	7.56	42.27	19.89	-	-	-	0.99	99.21
9 10	2	15.14	13.35	7.50	42.03	19.80	-	-	-	0.98	98.80
10	3	15.47	13.44	7.59	41.49	19.86	-	-	-	0.92	98.77
12	4	15.3	13.33	7.54	41.21	19.83	-	-	-	1.00	98.21
13	5	15.08	13.41	7.55	41.24	20.07	-	-	-	0.94	98.29
14 15	6	15.49	13.33	7.51	42.09	20.03	-	-	-	0.91	99.36
16	7	15.59	13.24	7.47	41.70	19.86	-	-	-	1.00	98.86
17	8	15.14	13.33	7.50	41.79	19.85	-	-	-	0.89	98.50
18	9	15.21	13.29	7.45	41.88	19.88	-	-	-	0.91	98.62
19 20	10	15.81	13.22	7.56	41.96	19.72	-	-	-	0.88	99.15
21	11	15.63	13.22	7.43	42.02	19.94	-	-	-	0.91	99.15
22	12	15.55	13.30	7.47	41.13	19.88	-	-	-	0.97	98.30
23	13	15.31	13.37	7.49	41.49	19.95	-	-	-	1.00	98.61
24 25	14	15.26	13.33	7.49	41.68	19.79	-	-	-	1.00	98.55
26	15	15.50	13.43	7.59	42.29	19.84	-	-	-	0.97	99.62
27	16	15.15	13.44	7.54	41.65	19.80	-	-	-	1.01	98.59
28	17	15.20	13.37	7.52	41.49	19.90	-	-	-	0.97	98.45
29 30	18	16.26	13.39	7.55	41.81	20.02	-	-	-	0.98	100.01
31	19	15.19	13.25	7.42	41.74	19.87	-	-	-	0.94	98.41
32	20	15.27	13.36	7.48	42.64	19.93	-	-	-	0.92	99.60
33	Mean	15.38	13.34	7.51	41.78	19.89	-	-	-	0.95	98.85
35	Std.	0.28	0.07	0.05	0.38	0.08	-	-	-	0.04	0.49

2	
- २	
1	
-1 5	
с С	
0 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
24	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
۰0 ۵Δ	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

255 **References**

256	(1) Mysen, B. O.; Virgo, D. Structure and Properties of Silicate Glasses and Melts; Theories
257	and Experiment. In Advanced Mineralogy; Marfunin, A. S., Ed.; Springer Berlin Heidelberg,
258	1994; pp 238–254. DOI: 10.1007/978-3-642-78523-8_14.
259	(2) Morris, J. D.; Ryan, J. G. Subduction Zone Processes and Implications for Changing
260	Composition of the Upper and Lower Mantle. In Treatise on Geochemistry; Elsevier, 2003;
261	pp 451–470. DOI: 10.1016/B0-08-043751-6/02011-9.
262	(3) Sossi, P. A.; Klemme, S.; O'Neill, H. S.; Berndt, J.; Moynier, F. Evaporation of
263	moderately volatile elements from silicate melts: experiments and theory. Geochimica et
264	Cosmochimica Acta 2019, 260, 204–231. DOI: 10.1016/j.gca.2019.06.021.
265	(4) Sossi, P. A.; Moynier, F.; Treilles, R.; Mokhtari, M.; Wang, X.; Siebert, J. An
266	experimentally-determined general formalism for evaporation and isotope fractionation of Cu
267	and Zn from silicate melts between 1300 and 1500 °C and 1 bar. Geochimica et
268	Cosmochimica Acta 2020, 288, 316–340. DOI: 10.1016/j.gca.2020.08.011.
269	(5) Hashimoto, A. Evaporation metamorphism in the early solar nebula. Evaporation
270	experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of
271	primitive materials. Geochem. J. 1983, 17(3), 111–145. DOI: 10.2343/geochemj.17.111.

2 3 4	27
5 6 7 8	27
9 10 11	27
12 13 14	27
16 17 18	27
19 20 21	27
22 23 24 25	27
26 27 28	27
29 30 31	28
32 33 34 35	28
36 37 38	28
39 40 41 42	28
42 43 44 45	28
46 47 48	28
49 50 51 52	28
53 54 55	28
56 57 58	28
59 60	28

272	(6) Richter, F. M.; Janney, P. E.; Mendybaev, R. A.; Davis, A. M.; Wadhwa, M. Elemental
273	and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et
274	Cosmochimica Acta 2007, 71 (22), 5544–5564. DOI: 10.1016/j.gca.2007.09.005.
275	(7) Richter, F. M.; Dauphas, N.; Teng, FZ. Non-traditional fractionation of non-traditional
276	isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology 2009, 258
277	(1-2), 92–103. DOI: 10.1016/j.chemgeo.2008.06.011.
278	(8) Wang, J.; Davis, A. M.; Clayton, R. N.; Mayeda, T. K.; Hashimoto, A. Chemical and
279	isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare
280	earth element melt system. <i>Geochimica et Cosmochimica Acta</i> 2001, 65(3), 479–494. DOI:
281	10.1016/S0016-7037(00)00529-9.
282	(9) Norris, C. A.; Wood, B. J. Earth's volatile contents established by melting and
283	vaporization. Nature 2017, 549 (7673), 507–510. DOI: 10.1038/nature23645.
284	(10) Renggli, C. J.; Klemme, S. Experimental constraints on metal transport in fumarolic
285	gases. Journal of Volcanology and Geothermal Research 2020, 400, 106929. DOI:
286	10.1016/j.jvolgeores.2020.106929.
287	(11) Jochum, K. P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmann, A. W.; Amini, M.;
288	Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; Raczek, I.; Stracke, A.; Alard, O.;

Bouman, C.; Becker, S.; Dücking, M.; Brätz, H.; Klemd, R.; Bruin, D. de; Canil, D.; Cornell,

1	
2 3 4 5	29
6 7 8	29
9 10 11 12	29
13 14 15	29
16 17 18	29
19 20 21 22	29
23 24 25	29
26 27 28	29
29 30 31 32	29
33 34 35	29
36 37 38	30
39 40 41	3(
42 43 44 45	3(
46 47 48	3(
49 50 51	3(
53 54 55	3(
56 57 58	3(
59 60	30

290	D.; Hoog, CJ. de; Dalpé, C.; Danyushevsky, L.; Eisenhauer, A.; Gao, Y.; Snow, J. E.;
291	Groschopf, N.; Günther, D.; Latkoczy, C.; Guillong, M.; Hauri, E. H.; Höfer, H. E.; Lahaye,
292	Y.; Horz, K.; Jacob, D. E.; Kasemann, S. A.; Kent, A. J. R.; Ludwig, T.; Zack, T.; Mason, P.
293	R. D.; Meixner, A.; Rosner, M.; Misawa, K.; Nash, B. P.; Pfänder, J.; Premo, W. R.; Sun, W.
294	D.; Tiepolo, M.; Vannucci, R.; Vennemann, T.; Wayne, D.; Woodhead, J. D. MPI-DING
295	reference glasses for in situ microanalysis: New reference values for element concentrations
296	and isotope ratios. Geochem. Geophys. Geosyst. 2006, 7(2), n/a-n/a. DOI:
297	10.1029/2005GC001060.
298	(12) Klemme, S.; Prowatke, S.; Münker, C.; Magee, C. W.; Lahaye, Y.; Zack, T.; Kasemann,
299	S. A.; Cabato, E. J. A.; Kaeser, B. Synthesis and Preliminary Characterisation of New
300	Silicate, Phosphate and Titanite Reference Glasses. <i>Geostand Geoanalyt Res</i> 2008, 32(1),
801	39–54. DOI: 10.1111/j.1751-908X.2008.00873.x.
802	(13) Holloway, J.; Wood, B. J. Simulating the Earth: Experimental Geochemistry, Unwin
803	Hyman Inc., 1988.
304	(14) Hinton, R. W. NIST SRM 610, 611 and SRM 612, 613 Multi-Element Glasses:
805	Constraints from Element Abundance Ratios Measured by Microprobe Techniques.
306	Geostandards and Geoanalytical Research 1999, 23 (2), 197–207. DOI: 10.1111/j.1751-

908X.1999.tb00574.x.

2	
- 3 4 5	308
6 7 8	309
9 10 11 12	310
12 13 14 15	311
16 17 18	312
19 20 21	313
22 23 24 25	314
26 27 28	315
29 30 31	316
32 33 34 35	317
36 37 38	318
39 40 41	319
42 43 44 45	320
46 47 48	321
49 50 51	322
52 53 54 55	323
56 57 58	324
59 60	325

8 (15) Eggins, S. M.; Shelley, J. M. G. Compositional Heterogeneity in NIST SRM 610-617 9 Glasses. Geostandards and Geoanalytical Research 2002, 26(3), 269–286. DOI: 0 10.1111/j.1751-908X.2002.tb00634.x. 1 (16) Morizet, Y.; Ory, S.; Di Carlo, I.; Scaillet, B.; Echegut, P. The effect of sulphur on the 2 glass transition temperature in anorthite-diopside eutectic glasses. Chemical Geology 2015, 3 416, 11–18. DOI: 10.1016/j.chemgeo.2015.10.010. 4 (17) Larre, C.; Morizet, Y.; Bézos, A.; Guivel, C.; La, C.; Mangold, N. Particular H 2 O 5 dissolution mechanism in iron-rich melt: Application to martian basaltic melt genesis. J 6 Raman Spectrosc 2020, 51 (3), 493–507. DOI: 10.1002/jrs.5787. 7 (18) Bowen, N. L. The crystallization of haplobasaltic, haplodioritic, and related magmas. 8 American Journal of Science 1915, s4-40 (236), 161–185. DOI: 10.2475/ajs.s4-40.236.161. 9 (19) Huber, C.; Jahromy, S. S.; Birkelbach, F.; Weber, J.; Jordan, C.; Schreiner, M.; Harasek, 0 M.; Winter, F. The multistep decomposition of boric acid. Energy Sci Eng 2020, 8(5), 1650-1 1666. DOI: 10.1002/ese3.622. 2 (20) Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Namur, O.; Cartier, C.; Wang, S. Effect 3 of sulfur speciation on chemical and physical properties of very reduced mercurian melts. 4 Geochimica et Cosmochimica Acta 2020, 286, 1–18. DOI: 10.1016/j.gca.2020.07.024.

