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Abstract 

Crater size-frequency distribution (CSFDs) measurements allow the derivation of absolute 

model ages (AMAs) for geological units across various terrestrial bodies in the Solar System 

based on body-specific adjustments to the lunar chronology (e.g., Hartmann, 1970; Neukum et 

al., 1975, 1983,  2001;   Stöffler et al., 2001, 2006; Hiesinger et al., 2012; Robbins, 2014). Thus, 

it is important to revisit and test the accuracy of the lunar chronology using data from recent 

lunar missions (e.g., Hiesinger et al., 2000, 2012, 2015; Rajmon and Spudis, 2004; Stöffler et 

al., 2006), as well as newer analyses of lunar samples (e.g., Gaffney et al. 2011, Meyer, 2012; 
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Snape et al., 2016; Welsh et al., 2018). We generated a new detailed geological map of the 

Apollo 11 landing region based on spectral characteristics, topography, and albedo maps, which 

shows several mare units adjacent to the lunar module. Lunar Reconnaissance Orbiter Camera 

(LROC) images were used to measure new CSFDs and derive the cumulative number of craters 

with diameters ≥1 km or N(1) for the Apollo 11 landing site. The newly derived N(1) values 

are consistent with the presence of only one surficial unit at the landing site: the Group A, High-

K (high potassium) “young” mare basalt (Meyer, 2012). We reviewed the radiometric ages for 

Apollo 11 samples that have been determined since the calibration of the lunar cratering 

chronology, used our new geological map to reinterpret their provenance, and correlated them 

with the new N(1) values. These are plotted and compared with the lunar chronology of Neukum 

et al. (1983). Our calibration point for the Apollo 11 landing site is consistent with the earlier 

values, thus, confirming Neukum’s (1983) lunar chronology curve. 

1. Introduction 

The relative ages of geological features on planetary surfaces are often determined via the 

comparison of stratigraphic relationships. In addition, crater spatial densities of particular areas 

can also provide relative age information, because regions with more craters have an older age 

than regions with fewer craters. Crater size-frequency distribution (CSFD) measurements of 

relative crater spatial densities of geological units at the Apollo and Luna landing sites were 

calibrated to the radiometric and exposure ages of samples collected at the sites, thus, allowing 

the determination of absolute model ages (AMAs) for geological units across the Moon and on 

planetary bodies throughout the Solar System (e.g.,  Hartmann, 1970; Neukum et al., 1975, 

1983, 2001; Ivanov et al., 2001, 2002; Hiesinger et al., 2000, 2002, 2012; Stöffler et al., 2001, 

2006; Robbins, 2014). 

The Apollo 11 landing site is an important calibration point for the lunar chronology because 

of the well-studied radiometric and exposure ages of the returned samples (Kramer et al., 1977; 

Beaty and Albee, 1978; Guggisberg et al., 1979; Snyder et al., 1996; Stöffler et al., 2006; 

Gaffney et al. 2011; Meyer, 2012; Snape et al., 2016). The landing site is located in Mare 

Tranquillitatis, between rays from the relatively young craters, Theophilus, Alfraganus, and 

Tycho (Aldrin et al., 1969; Grolier, 1970; Stöffler et al. 2006) (Fig. 1). Detailed studies of the 

samples showed five different chemical classes of mare basalts, representing four groups of 

radiometric ages: Group A (3.58 Ga), a high potassium basalt; Group B1-B3 (3.70 Ga), a 
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complex group; and the two oldest groups Group B2 (3.80 Ga), and D (3.85 Ga) (Stöffler et al., 

2006; Meyer, 2012; Welsh et al., 2018). Despite the chemical differences between these basalts, 

they are all rich in titanium (Papanastassiou et al., 1970; Beaty and Albee, 1980; Snyder et al., 

1995; Stöffler et al., 2006). Clementine data revealed various mare units on the basis of spectral 

differences across Mare Tranquillitatis, which supports the identification of different basalt 

groups in the returned samples (Pieters et al., 1994; Rajmon and Spudis, 2004). 

Neukum (1983) derived two calibration points for the lunar chronology from the Apollo 11 

landing site. Neukum and coworkers (e.g., Neukum and Ivanov, 1994) observed different crater 

spatial density units representing the presence of different lava flows and inferred that the young 

one is the 3.58 Ga old group A basalts and the older one is the 3.80 Ga old group B2 or D 

basalts. Robbins (2014) measured the CSFDs in a 10x larger region of Mare Tranquillitatis 

around the Apollo 11 landing site, and suggests that slightly larger N(1) value represents the 

“old” basalt unit. Given that older basalts are present in the sample collection, it is likely that 

the larger Robbins (2014) area includes these older basalts. Neukum (1983) selected smaller, 

local measurement areas, because he argued that the count areas should be restricted to locations 

at the landing sites that clearly represent individual sampled geological units. 

We used recent data, including multispectral (Pieters et al., 1994), topographic (Scholten et al., 

2012; Barker et al., 2016), and high-resolution image data with various illumination geometries 

(Robinson et al., 2010) for a new detailed geological investigation of the Apollo 11 landing site, 

in order to check and improve the derivation of AMAs via CSFD measurements, and compare 

the relative crater frequencies with recently updated and measured lunar sample ages (e.g., 

Stöffler et al., 2006; Meyer, 2012; Snape et al., 2016). We include an appendix with reference 

images and individual CSFD measurement plots. 
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2. Methodology 

2.1 Data 

For the geological mapping of the Apollo 11 landing site and the surrounding region, we used 

the LRO WAC (Fig. 1a) and NAC albedo images (Fig. 2) (Robinson et al., 2010), the LRO 

WAC digital terrain model (DTM) (Scholten et al., 2012), the Lunar Orbiter Laser Altimeter 

(LOLA) and SELENE Terrain camera merged digital elevation model (DEM) (Barker et al., 

2016), and the Clementine UV-VIS color ratio mosaic (Pieters et al., 1994). Major geological 

structures were identified with the LOLA-SELENE Terrain Camera DEM (Barker et al., 2016), 

which has a pixel scale of 59 m. We also used this data as a base map. The LRO WAC DTM 

has a pixel scale of 236 m and shows that the lowest elevation is -4.2 km and the highest 

elevation is 1.7 km in the study area. The raw LRO data were calibrated and map-projected 

with ISIS3 (Anderson et al., 2004), and the processed data was obtained from the team products 

of the LRO Science Operation Center (Henriksen et al., 2016). Data currently unavailable 

publicly at the time of publication will become available via regular Planetary Data System 

releases.    

The Clementine UVVIS camera (Fig. 1b) data have a pixel scale of 100 m (Pieters et al., 1994; 

Rajmond and Spudis, 2004). Ratios of monochromatic mosaics: R = 750/415, G = 750/950, B 

= 415/750 were used to create a false-color image from the Clementine UVVIS data (Rajmond 

and Spudis, 2004). The color ratios exaggerate differences in the compositional and maturity 

levels of the geological units. Generally, in Clementine false-color mosaic, red represents 

mature highland material, light to medium blue excavated highland, orange low-Ti basalts, dark 

blue high-Ti basalts, and yellow to green excavated basalts (Fig. 1b and also see Appendix Fig. 

A1) (Rajmond and Spudis, 2004). Different mare units were identified in Clementine data 

primarily due to their spectral differences caused by the varying concentrations of iron and 

titanium in the overlying regolith (Fig. 4).  
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Fig. 1: The Apollo 11 landing site (green triangle), located in Mare Tranquillitatis, was studied 

using (a) the LRO WAC mosaic and (b) the Clementine UV-VIS false color ratio mosaic, to map 

different mare units on the basis of spectral differences. The white polygon around the landing 

site shows the extent of the original count area of Neukum (1983), which was used to measure 

CSFDs for the Apollo 11 landing site.  

For CSFD measurements on LRO NAC data, we used image pairs M102000149 (pixel scale 

1.19 m; incidence angle 79.5°), M150361817 (pixel scale 0.5 m; incidence angle 62.5°), and 

M162154734 (pixel scale 0.5 m; incidence angle 79.5°). Along with these image pairs, we used 

LRO NAC-derived controlled mosaics from the image pair M16161085 (pixel scale 0.5 m; 

incidence angle 81.7°), which has an overall pixel scale of 1.81 m, (Fig. 2a) and a DTM mosaic 

of image pairs M150361817 and M150368601 (Fig. 2b) (Henriksen et al., 2016). The NAC 

DTM shows a lowest elevation of -2017 m and a highest elevation of -1808 m. An orthographic 

projection (Longitude of the center: 23.6 and Latitude of the Center 0.69) was used for our 

study to minimize distortions (Anderson et al., 2004; Robinson et al., 2010).  
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Fig. 2: LRO NAC data was used for the detailed study of the landing site, as well as CSFD 

measurements. These data include: (a) the controlled mosaic of image pair M16161085 and (b) 

the NAC DTM mosaic of image pair M150361817. 

2.2 Mapping Technique 
Our detailed geological map is based on a detailed inspection of albedo, spectral, and 

topographic information. For the mapping of the mare units in southwestern Mare 

Tranquillitatis, we applied the same approach of hybrid spectral mapping on the Clementine 

data as Hiesinger et al. (2000).  The overall stratigraphic scheme for the mapping was adapted 

from Fortezzo and Hare (2013), who produced a digital version of various geological maps at 

1:5M scale. Fortezzo and Hare (2013) followed the stratigraphic scheme proposed by Wilhelms 

(1987). The symbology used for mapping the geological features follows the standards of the 

Federal Geographic Data Committee (2006). The nomenclature for the mapped craters and 

regions were taken from the Gazetteer of Planetary Nomenclature (Blue, 1999) 

Major differences in the geological units were observed through albedo contrast (here used as 

a qualitative characteristic) on LRO WAC data (Robinson et al., 2010). For example, the high 

albedo highland material shows a clear contrast from the low albedo mare units. The extent of 

the ray material from the young Copernican craters was also noted as an albedo contrast.  

However, different mare unit boundaries were observed and defined using the variation in FeO 

and TiO2 content as seen in the Clementine data (Rajmond and Spudis, 2004).  The extents of 

the geological structures, including normal and reverse faults, crater rims, kipukas, and other 

elevated structures were marked using the LOLA-SELENE DEM (in meters) as a reference 

(Barker et al., 2016).  
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2.3 CSFDs Measurement Technique and Lunar Cratering 
Chronology  
The technique to determine relative and absolute model ages from CSFD measurements 

involves two basic steps: (1) identification and measurement of a homogeneous geologic area 

and (2) accurate measurement of the numbers and diameters of primary craters within this area 

(e.g., Hartmann, 1970; Neukum et al., 1975, 1983,  2001; Hiesinger et al., 2012). Traditionally, 

the obtained crater diameters are distributed into diameter bins, specified, for example in Crater 

Analysis Techniques Working Group (1979), Neukum et al. (2001), Stöffler et al. (2006), 

Kneissl et al. (2011), and Michael et al. (2010, 2013, 2016). For our study, we used pseudolog 

binning and cumulative plotting and fitting of our data (Michael et al., 2010, 2013, and 2016) 

to allow it to be directly compared with previous work by Neukum et al. (2001) and Hiesinger 

et al. (2011, 2012). The geological units of different ages contain crater distributions that have 

the same shape in overlapping diameter ranges (e.g., Hartmann, 1970; Neukum et al., 1975, 

1983,  2001; Marchi, 2009). These distributions can be aligned along a complex continuous 

curve, called the lunar production function (Neukum et al. 1975, 1983, 1994 and 2001), by 

shifting them in log Ncum i.e. vertical direction (Neukum et al. 1975, 1983, 1994 and 2001; 

Hiesinger et al. 2000). Hence, the production function (Neukum et al. 1983, 2001) is a 

polynomial function, defining the crater size-frequency in diameter range for a certain time of 

exposure. Neukum et al (1983. 2001) derived the lunar production function as an eleventh-

degree polynomial function: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑎𝑎0 + ∑ 𝑎𝑎𝑘𝑘11
𝑘𝑘=1 [𝑙𝑙𝐿𝐿𝐿𝐿(D)]𝑘𝑘    (1) 

Here, a0 represents the distribution density (Michael et al. 2016) and D represents the diameter 

range of certain size. The production function of Neukum et al. (2001) has been independently 

tested (e.g., Hiesinger et al., 2012) and shown to be a good fit for the craters in the diameter 

range of 10 m to 100 km. 

The lunar cratering chronology was established (e.g., Neukum et al., 1983,  2001) by correlating 

the radiometric/exposure ages of Apollo and Luna samples to the cumulative number of craters 

greater than or equal to a reference diameter within the geological unit. This correlation defines 

the impact rate on the moon as a function of time represented as lunar cratering chronology 

curve (e.g., Neukum et al., 1983,  2001). The calculation of the chronology is well described in 
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e,g., Hartmann. (1970), Neukum et al. (1975, 1983,  2001), Stöffler et al. (2001, 2006) and  

Hiesinger et al., (2000). The chronology function relates the accumulated distribution density 

to the surface exposure age. The arbitrary reference diameter for which cumulative density can 

be given is 1 km.  The chronology function is expressed analytically as: 

N (1) = 5.44x10-14[exp(6.93T)-1] +8.38.10-4T   (2) 

Equation 2 correlates craters of a certain diameter range in km2 area crater accumulation 

(retention) age T in Ga (billion years). 

To evaluate potential contamination from secondary craters during the measurement of the 

crater diameters, Michael et al. (2012) developed a randomness analysis to aid in identifying 

crater clustering on different scales through the mean closest neighbor (crater) distance in the 

area. This analysis identifies diameter ranges of craters that show clusters and chains. Thus, the 

error related to measured N(1) values can be reduced by avoiding contamination from 

unnoticeable secondary craters. 

We measured CSFDs for the Apollo 11 landing site and its vicinity on Lunar Reconnaissance 

Orbiter Wide Angle (WAC) mosaic and Narrow Angle Camera (NAC) images. After 

processing, the images were imported into ArcGIS, and the extension CraterTools (Kneissl et 

al., 2011) was used to perform CSFD measurements of homogeneous geologic areas. The areas 

used for measuring the N(1) values were carefully selected to avoid obvious secondary craters 

chains and clusters (McEwen and Bierhaus, 2006), on the basis of their morphology. Few 

clusters and chains were also avoided by excluding the marked diameters of these clusters 

during the CSFD measurements. Afterward, the randomness analysis (Michael et al., 2012) was 

applied to identify clusters or chains of the secondary craters to minimize their effects on our 

derived AMAs. Crater diameters smaller than 50 m show some degree of clustering in the 

randomness analysis (Michael et al., 2012). However, these craters were not used to derive N(1) 

values and, thus, do not affect the accuracy of our results. 

On WAC images, we measured the same area as Neukum (1983), which was used for the 

derivation of the original lunar chronology of Neukum (1983). We also measured several 

geologically homogeneous areas on LRO NAC images for comparison with Neukum (1983) 

and areas selected on the LRO WAC mosaic. 

The numbers and diameters of the measured craters were exported to Craterstats (Michael and 

Neukum, 2010; Michael et al., 2012; Michael, 2013; Michael et al., 2016) to derive AMAs 
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using the lunar production and chronology functions of Neukum et al. (2001). We present our 

CSFD measurement in cumulative plots (Crater Analysis Techniques Working Group, 1979; 

Neukum et al., 2001; Michael and Neukum, 2010), but also used R-plots (Appendix A6) and 

differential plots to determine the best fit range. Thus, our determined AMAs can be directly 

compared with the previously fitted results by Neukum (1983).  

 

3. Geological Mapping 

Gravity studies of the Mare Tranquillitatis identify the basin as a non-mascon basin, filled with 

thin lava flows (Staid et al., 1996; De Hon, 2017). De Hon (2017) proposed based on GRAIL 

gravity anomalies (Zuber et al., 2013) that the irregular shape and topographical differences of 

Mare Tranquillitatis show that it consists of two overlapping basins.  

The lunar module Eagle landed in the southwestern part of Mare Tranquillitatis at 0°41’15” N 

and 23°26’ E, about 44 km northwest of the Moltke crater. We mapped the area surrounding 

the landing site (southwestern Mare Tranquillitatis) and identified various geological features 

(Fig.3) including mare units, structural features, crater rays, and different generations of craters. 

We used LOLA/Kaguya merged DEM hill shade data as a base map in orthographic projection. 

The mapping area extends between 15o-33oE and 10oN - 8oS. The digital mapping was 

completed at a scale of 1:50 K, and the differently sized features used different vertex distances. 

The smaller geological features have a vertex distance of ~400m, while the larger features have 

the vertex distance up to 10 km. Identification and confirmation of the geological features 

required various data sets.     
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Fig. 3: The geological map of the southwestern part of Mare Tranquillitatis, showing mare 

units, the Fra Mauro and Cayley Formations, a radial pattern of wrinkle ridges, and a 

concentric pattern of rilles, as well as rays and various highland units. 

 

3.1 Mare Basalt Units 
The mare basalt units in Mare Tranquillitatis were mapped by earlier workers using different 

photometric and multispectral data (e.g., Morris and Wilhelms, 1967; Grolier, 1970; Pieters et 

al., 1994; Staid et al., 1996; Rajmond and Spudis, 2004; Hiesinger et al., 2001, 2003, 2012). In 

the geologic map of the Sabine D region of the Moon, which contains the Apollo 11 landing 

site, Grolier (1970) recognized different mare units based on spectral reflectivity during photo-

geological studies on the Lunar Orbiter high-resolution photographs: II-H84-2, II-H84-3, II-

H85-2, II-H85-3, II-H86-2, II-H86-3, V-H71, V-H72, V-H75, and V-H76. According to 

Shoemaker et al. (1969) and Grolier (1970), the lunar module landed on the stratigraphically 

oldest mapped unit. However, the marked gradational boundaries between the mapped units 

were not definite. In contrast, Staid et al. (1996) proposed that the landing site lies on the 
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youngest and most titanium-rich mare unit in Mare Tranquillitatis, based on a comparison of 

the radiometric basalt ages (Apollo 11 group A; high-K, high-Ti samples) with the mare units 

observed with the multispectral Galileo and Clementine data. Most of the previous studies (e.g., 

DeHon. 1974; Beaty and Albee, 1980; Eugester, 1982; Staid et al., 1996; Rajmond and Spudis, 

2004) interpreted the mare units as thin lava flows with an upper Imbrian age, in accordance 

with the few kipukas of highlands materials in Mare Tranquillitatis. 

On the basis of albedo alone, the boundaries of the units are not very well defined. Thus, we 

used the Clementine UV-VIS color ratio mosaic (Fig. 1b) to identify spectral differences (e.g., 

Staid et al., 1996; Hiesinger et al., 2000) in the surroundings of the landing site. The Clementine 

data show clear variations in the concentrations of titanium and iron (Fig. 4, Pieters et al., 1994; 

Rajmond and Spudis, 2004). However, in Mare Tranquillitatis all basalt units are relatively high 

in titanium as suggested by the “blueness” of the Clementine false-color ratio data (Fig. 1b, 

Giguere et al., 2000; Rajmond and Spudis, 2004). Ejecta and rays from various craters caused 

mixing of low titanium material with the basalts. The scales for the concentrations of the TiO2 

and FeO are derived after the sample studies of Giguere et al. (2000) and Clementine-based 

geological studies of Rajmon and Spudis (2004). Giguere et al. (2000) showed that the TiO2 

concentrations of collected basalts samples from the Apollo 11 landing site are higher than 9 

wt%. In our new geological map, we defined five mare units representing different lava flows 

(Fig. 3): Im1, Im2, Im3, Im4, and Im5. We performed CSFD measurements on portions of each 

flow unit to determine the N(1) values and AMAs for each. 
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Im1: In the Clementine UV-VIS false-color ratio mosaic, Im1 has an orange color and has 

superposed yellow-colored craters (Fig. 1b). This unit is well distinguished from the 

surrounding “blue” mare units. The concentration of TiO2 is about 11 wt% (Fig. 4a) and the 

concentration of FeO is about 18.5 wt % (Fig. 4b). Lower titanium crater rays overprint the unit 

(Fig. 4a).  

 Im1 is surrounded to the east and west by units Im2 and Im4, whereas it is bounded from the 

north and south by unit Im3 (Fig. 3). The Im1 unit is mapped as a continuous single unit thus, 

it may be younger than unit Im2.  

Im2: The unit Im2 shows a “light blue” color in Clementine false-color mosaic (Fig. 1b), with 

a strong contrast to the surrounding units. The TiO2 concentration is ~13 wt% (Fig. 4a) and FeO 

concentration is ~19 wt% (Fig. 4b), which are higher than for unit Im1. The mapped unit 

extends in north and southeast directions (Fig. 3). 

Im3: The Apollo 11 landing site is within this mapped unit. The Clementine data show a “dark 

blue” color (Fig. 1b). With about 14 wt% and 19 wt% respectively, the TiO2 (Fig. 4a) and FeO 

(Fig. 4b) concentrations are quite similar to that of unit Im2. This unit surrounds units Im1, Im2 

 

Fig. 4: Clementine (a) TiO2 and (b) FeO abundance map superposed on LRO WAC mosaic, for 

the surroundings of the Apollo 11 landing site (green triangle). The spectral boundaries marked 

as dash lines show the extent of various mare units identified in the mapping area through 

spectral differences.  
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and Im4, making it the largest unit present in our mapped area (Fig. 3). The southern parts of 

the unit show mixing of low FeO concentrated material transported from the highland units via 

crater rays. 

Im4: This unit is characterized by a “bright orange” color in the Clementine false color data 

(Fig. 1b). The TiO2 concentration is ~9 wt% (Fig. 4a), which is somewhat lower than for the 

other mare units, perhaps due to the mixing of the low titanium material from crater rays. 

Whereas, the FeO concentration is ~18 wt% (Fig. 4b). The lobateness of the unit boundary, as 

well as the differences in albedo and spectral contrasts, suggests that this unit is a distinct mare 

flow (Fig. 3). Some isolated traces of this unit occur in the eastern part of the study area, 

indicating superposition of the unit by the younger Im3 lava flows.  

Im5: This unit exhibits a high albedo in LRO WAC image and blue color with red patches in 

the Clementine false-color ratio (Fig. 1b). The TiO2 value is 4 wt% (Fig. 4a), while the FeO 

content is 16 wt % (Fig. 4b) – the lowest of all the studied units. These low values could result 

from mixing with low titanium and low iron materials from the highlands, because the mapped 

unit is restricted to the borders of the basin along the foothills of the highlands (Fig. 3).  

Idm - Mare dome material: In LRO LOLA and SELENE Terrain Camera DEMs, there 

exist small hills north and northwest of Arago B crater, in mare unit Im3. The gradational 

boundaries of these topographic highs distinguish them from highlands remnants. Compared to 

their widths, these dome structures have little topographic relief. They share the same albedo 

contrast with the surrounding mare material. Similar smaller domes occur in a chain-like 

fashion and are aligned with a previously identified larger dome, to the north of Arago crater. 

The domes are not aligned with either wrinkle ridges or graben structures (Fig. 3). 

 

3.2 Highland Units 

The highlands exhibit clearly different albedos, spectral characteristics, and topography 

compared to the mare units. They lie in the western and southern parts of the study area. 

Although the highlands in our study area are characterized by a complex geology, we mapped 

only the most prominent features in the highland regions, which were relevant for our study of 

the CSFDs of the geological units in Mare Tranquillitatis. The greater density and larger sizes 
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of craters, in addition to the stratigraphic relationships, indicate that the highlands are older than 

the mare units. 

Morris and Wilhelms (1967) defined the Fra Mauro formation as the ejecta of Imbrian basin in 

their geological map of the Julius Caesar quadrangle and divided the formation into three units: 

Fra Mauro hills, Fra Mauro smooth material, and Fra Mauro buried material. Our map mostly 

agrees with the Morris and Wilhelm (1967) distribution and interpretation of the units, but not 

with the extents of these units (Fig. 3). Foretzzo and Hare (2013) digitally renovated map of 

1:5M did not clearly distinguish the plain material of Fra Mauro Formation from other Imbrian 

plain units. 

Ifm - Fra Mauro hills: The highlands to the west of the landing site mainly consist of Imbrium 

ejecta classified as the Fra Mauro Formation (Fig. 5a), which is characterized by a northwest-

southeast lineated terrain, oriented radially to the Imbrium basin.  

Ifs - Fra Mauro Smooth terrain: In the northwest region, we mapped the smooth plains as a 

sub-unit of the Fra Mauro Formation.  This unit is less hummocky than the Fra Mauro hills 

(Ifm), but shows a fine lineation similar to Fra Mauro formation (Fig. 5b). This unit might 

consist of mare material mixed with highland material.  
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Ip – Imbrian Plains: Morris and Wilhelms (1967) named this unit the Cayley Formation (Ica), 

which is quite similar to the smooth areas of the Fra Mauro formation, except for being more 

hummocky (Fig. 6a). Mapped as patches in the highlands, this unit probably represents 

accumulated volcanic ash material or ballistically deposited ejecta layers from surrounding 

craters (Morris and Wilhelms, 1967). Foretzzo and Hare (2013) designated most of the plain 

material in the highlands as Ip. Our map distinguishes Ip from the Ifs and IpIm units on the 

basis of albedo, spectral, and stratigraphical differences. This unit was also mapped as lunar 

light plains by Meyer and Boyd (2018). 

IpIt - Highland (terrain):  This unit includes all highland terrain materials that are not further 

subdivided and may consist of more than one geological unit. The unit likely includes the ejecta 

from pre-Imbrian or Imbrian basins. Although, in the mapping area the origin of this unit is 

unclear (Fig. 6b).  

IpIm - Highland plains material:  IpIm includes all highland plains materials that cannot be 

classified as Ifs or Ip terrains. This unit is smooth; however, it is the most hummocky of the 

three plains units (Ifs, Ip and IpIm) (Fig. 6b). Wilhelms (1972) compared this unit to Ip but 

considered it as intercrater materials of pre-Imbrian age, whereas Foretzzo and Hare (2013) 

 

Fig. 5: Two units of the Fra Mauro Formation were mapped in the northwest of the landing site 

in the LRO WAC mosaic (reference map A2 in Appendix): (a) The Ifm unit shows lineations in a 

northwest-southeast direction, and (b) the Ifs unit, which is smoother than Ifm, shows only faint 

lineations similar to the Ifm unit.  
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mapped it as Ip. In our interpretation, it may have the same origin as the Cayley formation with 

a different thickness, with accumulated ejecta from the Copernican-aged Theophilus crater 

and/or other young craters.  

 

Fig. 6: Additional highland units (reference map A2 in Appendix) identified in the LRO WAC 

mosaic include: (a) Ip unit, which is also known as the Cayley Formation (Morris and Wilhelms, 

1967), and (b) IpIt and IpIm units, which may contain more than one unit of Imbrian and pre-

Imbrian ages.  

3.3 Structures 

The newly derived geologic map shows a radial pattern of thrust faults recognized as wrinkle 

ridges (Fig 7a.) in the southwestern part of Mare Tranquillitatis. In the middle of the map is an 

unusual circular ridge pattern called the Lamont ridges (Morris and Wilhelms, 1967; 

Shoemaker et al., 1969). Shoemaker et al. (1969) interpreted the Lamont ridges as localized 

wrinkle ridges over a shallow mare-covered crater. However, we did not observe other evidence 

for a buried crater in our data sets. 

Graben structures or arcuate rilles (Fig 7b.) form a semi-concentric radial pattern around the 

mare units, which follow the southwestern edge of Mare Tranquillitatis. However, in our study 

area a few straight graben could also be mapped in the highlands (Fig. 3). About 140 km west 

of the landing site, there is a sinuous rille oriented from northwest to southeast. This rille can 

be interpreted as an extinct lava tube associated with the mare unit Im4, as it follows the same 
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direction as the mare flow. Though the sinuous rille is traceable in parts, no prominent and 

associated pits or skylight craters were found.   

 

Fig. 7: Identified structures (reference map A3 in Appendix) in the LRO WAC mosaic include: 

(a) wrinkle ridges forming radial pattern and the Lamont ring structure in the southwestern 

Mare Tranquilities, and (b) graben or rilles, along the edge of the mare units and the radial 

pattern of the wrinkle ridges.  

The elevation profile and stratigraphic relationships of the mapped rilles and ridges in the mare 

area show they are younger than the youngest mare units. Golombek and McGill (1983) 

proposed that the wrinkle ridges and rilles are formed by stresses generated during subsidence 

of the basin. 

3.4 Craters 
At the landing site, crater sizes range up to several tens of meters in diameter, with some craters 

that are interpreted as secondaries from Theophilus (Morris and Wilhelms, 1967; Aldrin et al., 

1969; Shoemaker et al., 1969; Grolier, 1970). West crater is situated approximately 400 m east 

of the landing site, has a sharp rim, and a very blocky surface. The 12 m long, 6 m wide, 1 m 

deep Double crater is located to the southwest of the lunar module (Fig. 2). About 50 m east of 

the lunar module is Little West crater (Fig. 2), 33 m across and 4 m deep (Aldrin et al., 1969; 

Shoemaker et al., 1969; Grolier, 1979, Beaty and Albee, 1980).  
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The crater population around the landing site is classified into different age classes (e.g., Morris 

and Wilhelms, 1967; Wilhelms, 1972, 1987; Grolier, 1970; Fortezzo and Hare, 2013) such as 

pIc- pre-Imbrian craters, Ic- Imbrian craters, Ec- Eratosthenian Craters, and Cc- Copernican 

craters   

pIc: The walls of craters in the highlands are commonly highly degraded; the craters 

themselves are partially filled with mare units and/or other craters material. They have no 

clearly defined ejecta in LRO and Clementine data. These craters are mostly covered by 

Imbrium ejecta material (Fig. 8a.), meaning they are pre-Imbrian in age. 

Ic and Icm: Imbrian craters (Ic) are old craters that are often filled by mare units. The rims 

of these craters are slightly degraded, but still visible (Fig. 8.b). The ejecta (Icm) of these craters 

is still somewhat visible, but is moderately degraded. The extent of the ejecta can be traced with 

spectral data. These craters are either Imbrian in age or late Imbrian in age, as they completely 

overlie the Imbrium ejecta material. 

 

Fig. 8: Craters in the LRO WAC mosaic (reference map A4 in Appendix) include: (a) pIc, highly 

degraded pre-Imbrian Julius Caeser crater and (b) Ic, Imbrian craters with visible, slightly 

degraded rims and partially degraded ejecta (Icm).  

Ec and Ecm: Eratosthenian craters exhibit sharp rims. Like Imbrian craters, they also show 

evidence of partially degraded ejecta, which can be mapped with spectral data. Ec is 

distinguished from Ic on the basis of their stratigraphic position and crater rim’s degree of the 
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degradation (Fig 9a.).  We used Clementine data to delineate the extent of the ejecta deposits. 

Small Erathosthenian craters do not show any clear traces of ejecta in these data, thus separating 

them from younger Copernican craters. 

Cc and Ccm: The young Copernican craters were classified on the basis of sharp rims and 

obvious ejecta deposits, which can be easily traced in both albedo and spectral data. These 

craters show bright ejecta material (Ccm) and rays extending away from them (Fig 9b.). For 

example, Moltke is a Copernican crater, which contributed ray material to the Apollo 11 landing 

site. 

 

Fig. 9: Craters identified in the LRO WAC mosaic (reference map A4 in Appendix) include: (a) 

Ec, Eratosthenian crater with partially degraded rim and ejecta Ecm, and (b) Cc, Copernican 

crater with a well-defined rim, ejecta (Ccm), and rays (Ccr). 

3.5 Rays (Ccr) 
The area surrounding the landing site is characterized by discontinuous ejecta (rays or Ccr unit 

in Fig. 3) from nearby and distant craters (Morris and Wilhelms, 1967; Aldrin et al., 1969; 

Shoemaker et al., 1969). In our map, these rays are shown as a separate geological unit on the 

basis of spectral contrast and the presence of the secondary craters. Most of the rays and 

secondary craters in the map area can be traced to Theophilus (Fig. 3 shows the ejecta of 

Theophilus south of Torricelli crater). Some rays with a northeast-southwest orientation may 

have been emplaced by Tycho, Alfraganus, or other younger craters (Morris and Wilhelms, 
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1967; Shoemaker et al., 1969). Approximately 15 km west of the landing site is a ray that trends 

north-northeast. Shoemaker et al. (1969) suggested this ray was formed by either Alfraganus or 

Tycho (Fig. 3). 

4. Crater Size-Frequency Distributions (CSFDs) 

Measurements  

To test and improve the lunar chronology, detailed CSFD measurements were done on LRO 

WAC and NAC images (Fig. 10, 11). The area used to determine the CSFD measurements were 

newly selected around the landing site while avoiding contamination from secondary crater 

material and other geological units (Fig. 3). Although, the effect of count area size on the 

accuracy of AMAs is still being investigate (e.g, Hiesinger et al. 2012, Pasckert et al. 2015; van 

der Bogert et al.,2015), we selected reasonable area sizes and crater diameter ranges for the 

determination of N(1) values for avoiding large uncertainties (see Tables, 1, 2 and 3). The crater 

diameters measured for the age determinations range from 10 m to 3 km. For the comparison 

of the calibration points (Table 4), we also measured CSFDs for the area previously defined by 

Neukum (1983), using the LRO WAC mosaic. For the confirmation of our results, we compared 

our studies with other studies mentioned in Table 4.  

4.1 LRO WAC measurements 

We selected two areas on the LRO WAC mosaic for comparative CSFD measurements. These 

areas represent two geologically homogeneous units: A mare unit named WAC_Im3 and a ray 

unit, WAC_Ccr (Fig. 10a). We selected an area on the ray material in order to investigate 

whether there was any effect of the ray on the CSFD. However, both areas give similar N(1) 

values of  7.13x10-3±1.19 km2 and 7.03x10-3±1.17km2, respectively (Fig. 10a’). As such, we 

merged the two areas to improve the statistics of the result, and get an N(1) value of 6.88x10-

3±0.611 km-2. Our recount of the Neukum (1983) area, fit with the Neukum et al. (2001) 

production function gives an N(1) value of 6.47x10-3±0.496 km-2. The summary our results 

gained from LRO WAC data is shown Table. 1.  
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4.2 LRO NAC measurements 

We selected four geologically homogenous areas in NAC frames M102000149 and 

M162154734: (a) Im3_LS, (b) Im3_LS_North, (c) Im3_LS_South, and (d) Ccr_LS (Fig. 11.a, 

a’). The area Im3_LS is a homogeneous area surrounding the lunar module. Extra vehicular 

activities (EVAs) during the Apollo 11 mission took place within the boundaries of this area. 

The calculated N(1) of this area is 5.74x10-3±0.99 km-2. Area Im3_LS_South, to the south of 

the landing site, yields an N(1) of 3.95x10-3±0.69 km-2. Area Im3_LS_North, to the north of the 

landing site, gives N(1) of 6.97x10-3±0.76 km-2. Area Ccr_LS was measured on an area 

containing a ray to investigate whether the CSFD here was affected by the emplacement of the 

ray, and yields an N(1) of  6.97x10-3 ±1.29 km-2, which is similar to N(1) value of  

Im3_LS_North but with higher uncertainty. The randomness analysis (Michael et al., 2012) of 

the count areas shows the presence of potential secondary clustering in diameter ranges below 

50 m. Thus these diameter ranges were not used for fitting the N(1) values.  If the CSFD 

measurements of these areas are merged (Fig. 11b, b’), they result in an overall an N(1) of 

6.42x10-3±0.54 km-2. The comparison and details of the measured values are summarized in 

Table 2.  

 

Table 2. Areas, fit ranges, N(1)’s and model ages derived from the LRO NAC data. 

Table 1.  Areas, fit ranges, N(1)’s and model ages derived from the LRO WAC data. 

Area Name Area 

[km2

] 

No. of 

crater

s fit 

Fit range (km) Ncum(D≥1

km) [km-

2] 

Ncum(D≥1k

m) [km-2] 

error 

AM

A 

[Ga] 

AMA 

[Ga] 

error 

WAC_Im3 444 36 0.4-1.2 7.13x10-3 ±1.19x10-3 3.61 ±0.02

7 

WAC_Ccr 356 36 0.45-1.5  7.01x10-3 ±1.17x10-3 3.61 ±0.04 

WAC_merg

e 

8 127 0.4-1.5 6.88x10-3 ±6.11x10-4 3.61 ±0.02

2 

A11_WAC 

(Neukum, 

1983) 

1590 170 0.45-2.5 6.47x10-3 ±4.96x10-4 3.59 ±0.02 
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Area Name  Area 

[km2] 

No. of 

craters 

fit 

Fit range (m) Ncum(D≥1k

m) [km-2] 

Ncum(D≥1k

m) [km-2] 

error 

AMA 

[Ga] 

AMA 

[Ga] 

error 

Im3_LS 15.6 33 220-500 5.74x10-3 ±9.99x10-4 3.56 ±0.05 

Im3_LS_South 13.6 33 170-500 3.95x10-3 ±6.88x10-4 3.42 ±0.1 

Im3_LS_North 76.2 84 250-900 6.97x10-3 ±7.6x10-4 3.61 ±0.022 

Ccr_Ls 29.8 29 250-700 6.97x10-3 ±1.29x10-3 3.61 ±0.04 

NAC_merge 135 140 230-900 6.42x10-3 ±5.43x10-3 3.59 ±0.022 
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Fig. 10 (a) Two geological units were measured in LROC WAC mosaic, i.e., a mare basalt (purple) and 

a ray (yellow) for comparison with the Neukum (1983) count area (blue). (a’) The N(1) valued obtained 

on the cumulative plot for remeasured Im3, Ccr and  Neukum (1983) areas (b) New areas measured on 

LRO WAC data (black) and Neukum (1983) count area (blue). (b’) The merged WAC-derived (black) 

AMA value is identical to that derived from the WAC CSFD measurements (blue). 
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Fig. 11: CSFD measurement areas, cumulative frequency plots, and absolute model age fits. (a) The 

original area mapped by Neukum (1983) (blue) was remeasured on the LROC WAC mosaic, in addition 

to the small areas marked in red (Im3_LS, landing site), yellow (Im3_LS_South), green (Im3_LS_North) 

and violet (Ccr_LS), which were measured on LRO NAC data. (a’) The CSFD from the Neukum (1983) 

area is compared with the areas measured on NAC data. (b) Areas measured on LRO WAC data (blue) 
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5. Discussion 

5.1 Discussion of Various Geological Units 

We found that the basalt units Im1, Im2, Im3, and Im4 may have differences in age of a few 

hundred million years, as suggested by our CSFD measurements (Table. 3). The CSFD of the 

unit Im1 allows us to fit two N(1) values 5.26x10-3±0.445 km-2 and 1.52x10-2±0.128 km-2 . The 

CSFD of unit Im2 yields N(1) value of 8.71x10-3±0.736 km-2. Unit Im3 has 6.90x10-3±0.529 

km-2. The N(1) value for Im4 is 8.25x10-3±0.697 km-2. On the basis of our CSFD measurements, 

we find two N(1) values of 9.73x10-3±0.822 km-2 and 3.88x10-2±0.3286 km-2 for unit Im5. 

Some of the basalts (e.g., Im3, Im4) were modified by the formation of wrinkle ridges and the 

emplacement of ray materials. Thus, the CSFDS of the small craters measured in the NAC 

images for these areas might have been affected by these processes. However, CSFD 

measurements on the WAC data, show no effects from the ray material on the resulting AMAs 

around the landing site, suggesting that the ray materials are rather thin and did not affect the 

size range of craters we used for determining the N(1) values and absolute model ages. 

Table 3. Compared crater retention values and model ages of different mare units. 

Unit  Area 

[km2] 

No. of 

craters 

fit 

Fit range (km) Ncum(D≥1 

km) [km-2] 

Ncum(D≥1 

km) [km-2] 

error 

AMA 

[Ga] 

AMA 

[Ga] 

error 

Im1 669 58 0.45-1.4 5.26x10-3 ±4.45x10-4 3.53 ±0.04 

3 1.1-2.5 1.52x10-2 ±1.28x10-3 3.77 ±0.13 

Im2 750 71 0.491-2 8.71x10-3 ±7.36x10-4 3.66 ±0.025 

Im3 1430 121 0.45-3 6.90x10-3 ±5.29x10-4 3.61 ±0.022 

Im4 499 114 0.4-1.1 8.25x10-3 ±6.97x10-4 3.65 ±0.02 

Im5 645 39 0.6-1.2 9.73x10-3 ±8.22x10-4 3.68 ±0.03 

3 2-3 3.88x10-2 ±3.28x10-3 3.93 ±0.01 

 

and LRO NAC data (red). (b’) The merged NAC-derived (red) AMA and N(1) value, is identical to that 

derived from the WAC CSFD measurement (blue).  
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We compared the new mare unit ages and boundaries with those of Hiesinger et al. (2000). Our 

study area contains the following units of Hiesinger et al. (2000): T1, T3, T6, T9, T11, T12, 

T14, T15, T17, T18, T20, T21, T22, T23, T26, and T27 (Fig. 12. b). These mare units were 

mapped on the basis of Galileo spectral information, thus, showing a few differences compared 

with our study, which uses Clementine data. Staid et al. (1996) explained that although 

Clementine data used coinciding filters with Galileo data, due to the higher resolution (pixel 

scale of 150-300 m) of the Clementine data compared to the Galileo data (pixel scale of 1.5-2 

km), the spectral boundaries of the various basalts units appear clearer. The Hiesinger et al. 

(2000) mapping was mainly focused on the spectral differences in the lunar maria, whereas our 

detailed mapping identified various other geological units. We also used TiO2 and FeO data to 

confirm our mare unit boundaries (Fig. 4). Unit T17 defined by Hiesinger et al (2000) covers 

an area around the landing site and yields N(1) 7.60x10-3 ±1.00 km-2 ,shows a model age of 3.61 

Ga, which compares to the newly mapped unit Im3, which has an N(1) value of 6.42x10-3±0.54 

km-2  and AMA of 3.61±0.023 (see Table 3) and also covers an area around the landing site. 

We show individual cumulative plots for the CSFD measurements of these units in Appendix 

A5. 

 

Fig. 12: (a) The geological map showing the ages of different mare units identified in the 

southwestern part of Mare Tranquillitatis around the Apollo 11 landing site (green triangle). 

(b) A map of the mare boundaries defined by Hiesinger et al. (2000) using Galileo 
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multispectral data. Our new ages are consistent with the ages determined by Hiesinger et al. 

(2000), despite the units having somewhat different boundaries.  

5.1 Discussion of CSFD measurements 

Neukum (1983) measured two types of lava flows around the lunar module, both showing 

distinct N(1) values. In his work, the age of the old flow (3.72 ±0.1 Ga) has an N(1) value of 

9.0x10-3 km-2, while the young flow (3.53 ±0.05 Ga) has an N(1) of 6.4x10-3 km-2 (Neukum, 

1983). This work was followed by Stöffler et al. (2001, 2006), who reassessed the radiometric 

ages assigned to the “young” and “old” flows based on sample ages. Robbins (2014) interpreted 

his new N(1) 7.67x10-3 ±1.02 km-2 from a larger area surrounding the landing site to be closer 

to the “old” mare units. Our re-measurement of the Neukum (1983) area found an N(1) of 

6.42x10-3 km-2 with NAC data, and an N(1) of 6.11x10-3 km-2 with WAC data. Our results are 

consistent with the AMA of the young lava flow of Neukum (1983), but is inconsistent with the 

old lava flows AMA.  

Table 4. Comparison of crater retention values and model ages of different mare units from 

different investigators.  

 Unit  Area 

[km2] 

Number 

of 

craters 

fit 

Ncum(D≥1

km) [km-

2] 

Ncum(D≥1k

m) [km-2] 

error 

AMA 

[Ga] 

AMA 

[Ga] 

error 

This work NAC_merge 

(Im3) 

135 140 6.42x10-3 ±0.543x10-3 3.59 ±0.022 

WAC_merge 

(Im3) 

800 127 6.88x10-3 ±0.615x10-3 3.61 ±0.022 

Robbins, 

2014 

Apollo 11 12,828 604 7.67x10-3 ±1.02x10-3 3.72  

Marchi, 

2009 

[NEO] 

MT (young)    9.30x10-3  3.58  

MT (old)    1.836x10-

3 

 3.80  

Hiesinger 

et al., 2000 

T17 3754  7.60x10-3 ±1.00x10-3 3.63 ±0.07 
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The area defined by Neukum (1983) for CSFD measurements crosses three different mare units 

as defined in our geological map (Fig. 10, 11). This area yields an AMA of about 3.59 Ga on 

our WAC CSFD measurements. However, neither in our map nor in the CSFDs did we observe 

any evidence for an old flow exposed at the surface near the landing site area. The N(1) value 

6.90x10-3±0.529 km-2 of the mare unit Im3 is also consistent within error with the  N(1) value 

6.42x10-3±0.54 km-2 measured around the landing site with NAC data and 6.88x10-3±0.611 km-

2 measured on the WAC data. However, the mare unit Im5 is the oldest mare unit mapped at the 

edges of the basin has N(1) of 3.88x10-2±0.3286 km-2. Either this unit is missing around the 

landing site or it is buried underneath the younger units at the landing site, and is thus not visible 

in the data we used for mapping and CSFD measurements.  

We prefer the N(1) value derived on NAC data as the one to represent the geological unit from 

which the youngest basalt samples come, in part because these carefully chosen areas for tend 

to be less contaminated by secondary craters identified by randomness analyses.  Although we 

paid close attention to avoid any obvious secondary clusters and chains in our CSFD 

measurements, the randomness analyses (Michael et al., 2012) mostly indicate that craters 

smaller than ~50m show some degree of clustering.  However, these crater diameters were not 

used to fit the N(1)’s or AMAs and thus do not affect our results.  

6. Sample Studies 

6.1 Sample Collection  

During the Apollo 11 mission, 22 kg of samples were collected in the vicinity of the lunar 

module (Aldrin et al., 1969; Kramer et al., 1977; Meyer, 2012). The landing area is covered 

with porous and weakly coherent regolith. Hess and Calio (1969) described the landing site as 

consisting of debris ranging from 1 meter down to microscopic particles. Initially, one kilogram 

of contingency sample was collected adjacent to the lunar module (Fig. 13). Later, another 

fifteen kilograms of samples were collected as scooped rock and soil, in addition to two cores. 

The samples in bulk were collected as “documented samples” from an area 10 to 15 m southeast 

of the lunar module, shown in Fig. 14 (Aldrin et al., 1969; Kramer et al., 1977; Meyer, 2012). 

The regolith is estimated to be approximately 5 m thick in the landing region (Hess and Calio, 

Neukum, 

1983 

A11 “young” ~1590  6.40x10-3 ±2.00x10-3 3.53 ±0.05 

A11 “old”  ~1590  9.00x10-3 ±1.80x10-3 3.72 ±0.1 
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1969). According to the hypothesis of Beaty and Albee (1980), the samples may have been 

excavated by the formation of a single nearby crater such as West crater. Aldrin et al., (1969) 

suggested that West crater may have excavated material from a depth of 30 m, and could have 

provided direct samples of the bedrock. According to this theory, the regolith is derived from 

local bedrock (Aldrin et al., 1969; Beaty and Albee, 1980).  

 

 

Fig. 13: Mapped astronauts traverse around the Apollo 11 landing module and sample 

collection areas. Samples were collected as cores, bulk material, and scooped soils as defined 

by Kramer et al. (1977), on basis of the Preliminary Science Report Aldrin et al. (1969) and 

astronauts accounts. 
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Fig. 14: (a) The abundance of five types of basalts (A, B1, B2, B3, and D) in the collected bulk, 

scooped soil, and core samples. (b) Hypothetical sketch of West crater showing the sequence 

of basalts interpreted to form the determined radiometric ages. Modified after Beaty and Albee 

(1980) using ages of the units as defined by Stöffler et al. (2001, 2006). 

6.2 Radiometric Analysis of Basalts  

Petrological and radiometric studies divided the basalt samples into five different groups: group 

A, B1, B2, B3, and D (Jerde et al., 1994). Group A consists of high-K, high-REE (rare earth 

element) basalts; group B (including B1, B2, B3) are low-K, low-REE basalts; and group D are 

low-K, high-REE basalts (Jerde et al., 1994; Stöffler et al., 2006). The five groups of basalts 

are interpreted to represent different lava flows (Beaty and Albee, 1980; Jerde et al., 1994; 

Stöffler et al., 2006). The exposure ages indicate that the high potassium basalts were located 

on the surface, whereas the low potassium basalts do not have outcrops near the landing site 

(Aldrin et al., 1969; Beaty and Albee, 1980; Stöffler et al., 2006).  

The crystallization ages determined via Ar39-Ar40 (Guggisberg et al. 1979) and Rb-Sr 

(Papanastassiou et al. 1970) methods range from 3.60 to 3.90 Ga (Beaty and Albee, 1980; Jerde 

et al., 1994; Snyder et al., 1995; Stöffler et al., 2006). Group A is the youngest basalt group 

with an age of 3.60 Ga, followed by Group B1 (3.72 Ga), Group B3 (3.76 Ga) and Group B2 

(3.90 Ga) (Beaty and Albee, 1980). During later studies, the sample ages were refined as 

follows: Group A (3.58 G.a), Group B1/B3 (3.70 G.a), Group B2 (3.80 G.a), and Group D (3.85 

Ga) (Snyder et al., 1995). Group A is the most abundant rock type in the Apollo 11 sample 

collection, leading to the interpretation that it represents the surface lithology (Beaty and Albee, 

1980). Kuiper et al. (2008) argue that the old Ar-Ar ages need to be updated with the new decay 

constants to provide corrected ages. 

Papanastassiou et al. (1970) proposed that the rock samples collected from the Apollo 11 

landing site are from widely different sources and are not genetically related, on the basis of the 

variations in Rb-Sr isotopes. In particular, they performed Rb-Sr analyses on six crystalline 

samples from Group A: 10017 (3.59±0.05 Ga), 10057 (3.63±0.002 Ga), 10069 (3.68±0.00 Ga), 

10071 (3.68±0.02 Ga) and Group B: 10044 (3.7±0.11 Ga), 10058 (3.63±0.20 Ga) 

(Papanastassiou et al., 1970). Because this study yielded ages within a narrow range of 

3.65±0.06 Ga, they proposed that around this time at least two types of magmatic reservoirs 

were involved in the formation of lava flows at the Apollo 11 landing site. The flows are 
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described to differ chemically, but not texturally (Papanastassiou et al., 1970). Gaffney et al. 

(2011) compared ages determined via different isotopic systems (Sm-Nd, Rb-Sr, 238U -206Pb) 

for sample 10017 in controlled (unshocked and unheated), shocked, and heated states. In the 

controlled samples, they found ages of 3.633 ± 0.057, 3.678 ± 0.069 and 3.616 ± 0.098 with 

Sm-Nd, Rb-Sr, and 238U-206Pb respectively (Gaffney et al. 2011). Snape et al., (2016) measured 

a crystallization age of 3.688±5 Ga for sample 10044 on the basis of Pb-Pb dating. Thus, their 

age is consistent with the previous work of Papanastassiou and Wasserburg (1971) which 

produced an Rb-Sr age of 3.71±0.011 and Guggisberg et al., (1979) who determined an Ar-Ar 

age of 3.71±0.011. 

 

7. Calibration of the Lunar Cratering Chronology  

The Apollo 11 landing site is one of the important calibration points for the lunar chronology 

function (Neukum et al., 1983,  2001). We reevaluated the calibration points defined by Apollo 

11 samples and the count areas defined by Neukum (1983) with the aim to check and/or improve 

on the calibration point. 

Our study confirms that in light of the radiometric sample ages, spectral information, and 

measured CSFDs, the Apollo 11 landing site is located in a rather homogeneous mare basalt 

unit with an age of ~3.60 Ga (e.g., Beaty and Albee, 1980; Stöffler et al., 2006; Snape et al., 

2016). After detailed studies of the composition and radiometric ages of the samples. The Group 

A samples (like sample 10017 Ilmenite basalts) are representative of the mapped mare basalt 

unit Im3. The measured compositions of TiO2 (~14 wt%) and FeO (~19 wt%) of the samples 

(Mayer, 2012) coincide with ones measured with Clementine data in unit Im3. Therefore, we 

plot the average age of these surficial basalts, 3.59±0.05 Ga (e.g., Beaty and Albee, 1980; 

Snyder et al., 1995, Stöffler et al., 2006) for comparison with our newly measured N(1) values 

of 6.42x10-3±0.54km-2 and 6.88x10-3±0.611km-2on the Neukum (1983) chronology (Fig. 15). 

The selected age shows the least error and represents the Group A basalts, rather than individual 

samples.  

 We also compared our results with the Neukum et al. (2001) chronology, which shows a 

difference of about 100 Ma in the absolute model ages (AMAs) (see Appendix A7, A8).  

Neukum et al. (1983, 1994) argued that the production function did not change between the 
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Nectarian and the Copernican epochs. The production function calculated by Neukum et al. 

(2001) does not show any significant difference from the production function calculated by 

Neukum (1983), for the diameter range below 1 km (Stöffler et al. 2006). 

CSFD measurements of Neukum (1983) yielded two distinct N(1) values of 9×10-3 km-2 and 

6.4×10-3 km-2 for the Apollo 11 landing site area, which were compared to the radiometric ages 

of the samples and interpreted as ‘old lava flow’ and ‘young lava flow’ respectively. 

Consequently, Neukum (1983) introduced two calibration points for the Apollo 11 landing site 

for the lunar chronology (Fig. 15). However, these two calibration points poorly fit the lunar 

chronology, which was derived from a least squares fit to all existing data points (Fig. 15). 

Hiesinger et al. (2000) measured an N(1) value of 7.60×10-3 km-2 and an AMA of 3.63±0.07 

Ga for the mare unit T17 (Fig. 12.b), which contains the Apollo 11 landing site. The AMA 

determined in this work lies well in the range of the determined radiometric ages showing that 

the CSFDs and ages for various mare units in the Apollo 11 region are internally consistent. 

The point derived from Hiesinger et al. (2000) T17 unit’s N(1) value also fits relatively better 

with the Neukum et al (1983) chronology curve (Fig. 15), thus supporting the application of the 

curve.  

Recently, Robbins (2014) determined a single N(1) value of 7.67x10-3 km-2 with LRO WAC 

data, which is in the same range as Hiesinger et al. (2000) N(1) values. In Fig. 15, we compared 

the measured N(1) value with the age of “old” lava flows (after Robbins, 2014) i.e., ~3.72 Ga. 

However, it is possible that the single value determined by Robbin (2014) also represents the 

younger lava flow unit. The differences in the N(1) values may also result from the selection of 

a much larger count area, which can potentially cover many geological units. 

Marchi (2009) proposed a model production function and recalculated the N(1) of the Mare 

Tranquillitatis “old” and “young” units (Fig 15). The “old” unit of Marchi (2009) fits much 

better to Neukum (1983) lunar chronology than the “young” unit. However, most of the 

previous studies N(1) were compared with general “old” and “young” age group of the samples, 

We did not observe different lava flows around the landing site and compared the crater 

retention values of this unit with representative samples Group A ages of ~3.60 Ga. 
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Figure 15: Lunar cratering chronology curve after Neukum (1983). The gray points represent 

the values used by Neukum (2001) for the calibration of the curve. The data points in red and 

black represent our new calculated value of the Apollo 11 landing site, with NAC and WAC 

data respectively. We also added calibration points from Hiesinger et al. (2000, 2012) in dark 

red, Marchi (2009) in green, and Robbins (2014) in blue to compare these calibration points 

on the chronology curve. The inset shows the comparison of our updated values (red and black) 

to the old values measured by Neukum (2001)(gray), Hiesinger (2000)(purple), Marchi 

(2009)(green), and Robbins (2014)(blue). We included calculated errors in Table 4. 

 

 



Iqbal et al. (2019) 10.106/j.icarus.2019.06.020, ACCEPTED MANUSCRIPT 

34 

 

Conclusions  
The lunar cratering chronology is a basis for determining ages of unsampled geological units 

for the terrestrial bodies throughout the Solar System (e.g., Hartmann, 1970; Neukum et al., 

1975, 1983,  2001;   Hiesinger et al., 2000, 2012; Stöffler et al., 2001, 2006; Marchi, 2009; 

Robbins, 2014). Thus, it is important to test and improve the calibration points for the 

chronology function. While there are still uncertainties in determining the exact sources of the 

samples, detailed geological studies can assist in correlating the samples to likely surface units.  

In our study, we determined N(1) values for geologically homogeneous areas around the Apollo 

11 landing site, which were mapped using new high-resolution data. Within our map, we 

avoided obvious secondary craters in the CSFD measurements. We verified our results by 

measuring N(1) values on differently sized areas and across different diameter ranges on WAC 

and NAC data. Most basalt samples collected around the landing site represent the surficial 

high-K basalts, with radiometric age of around 3.60 Ga (e.g., Kramer et al., 1977; Gaffney et 

al. 2011, Meyer, 2012; Snape et al., 2016; Welsh et al., 2018). However, the radiometric ages 

still need to be updated with new decay constants (Naumenko-Dèzes et al., 2018) to complete 

the testing of the Apollo 11 calibration point. Nevertheless, the new CSFDs can be confidently 

correlated with the surficial high-K group A basalt group for the lunar chronology curve. 

Neither in the newly mapped area nor on the cumulative crater frequency curve did we observe 

two mare flows immediately next to the Apollo 11 landing site because we observed a single 

crater retention age or N(1) value for the area around the landing site (Fig. 16). With all the 

precautions we took to avoid sources of the errors, our new measurements fit well with and 

support the lunar cratering chronology (Neukum, 1983) for the calibration point of the Apollo 

11 landing site, in turn supporting the extension of the chronology to other Solar System bodies.  
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Appendix 

 

Fig.A1: The color reference chart summarized after Clementine false-color image as proposed 

by Rajmon and Spudis (2004). 
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Fig.A2: Reference map for Figures 5a, 5b, 6a, and 6b, showing examples for different 

highland units 

 

Fig.A3: Reference map for Figures 7a and 7b, showing examples for the structures present 

in the mapping area 
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Fig.A4: Reference map for Figures 8a, 8b, 9a and 9b, showing examples of pre-Imbrian, 

Imbrian, Erathosthenian and Copernican craters, respectively. 
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A5: The CSFD measurements and AMAs of the mare units: (a) Im1 (b) Im2 (c) Im3 (d) Im4 and (e) Im5, 

shown as cumulative plots with the production function (PF) and chronology function (CF) from Neukum et 

al. (2001), as well as an equilibrium function (EF) from Trask (1966). These CSFD measurements were made 

using WAC data. Randomness analysis (top panel) sometimes shows clustering at small diameters, which 

motivated the exclusion of these small crater diameter ranges from fitting of the CSFDs to determine the N(1) 

and AMAs values.  
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A6: The CSFD measurements in cumulative and R-Plots: (a) merged N(1) values (red) measured on the NAC 

data and (b) merged N(1) values (WAC) measured on the WAC data. Both values are compared with the values 

measured in the area selected by Neukum (1983) (blue).  
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A7: (a) The CSFD measurements and AMAs of Apollo 11 landing site made on the NAC data:  Im3_Ls with PF 

and CF (1983) and (a’) PF and CF (2001). (b)The CSFD measurements and AMAs of the ray material Ccr with 

PF and CF (1983) and (b’) PF and CF (2001). Randomness analyses for both Im3 and Ccr shows the data might 

have some degree of clustering at small crater diameters. While in Ccr (b,b’)bins around 40m shows more 

clustering. 
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A8: (a) The NAC CSFD measurements and AMAs of Im3_LS_North with PF and CF (1983) and (a’) PF and 

CF (2001). (b)The CSFD measurements and AMAs of the Im3_LS_South with PF and CF (1983) and PF and 

CF (2001).  Randomness analyses for Im3_LS_North (a,a’) shows contamination by secondaries at around 

125m, while for Im3_LS_South (b,b’) show slight degree of clustering for bin sizes around 40m, 70m and 125m. 
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